If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x-x^2=-782000
We move all terms to the left:
x-x^2-(-782000)=0
We add all the numbers together, and all the variables
-1x^2+x+782000=0
a = -1; b = 1; c = +782000;
Δ = b2-4ac
Δ = 12-4·(-1)·782000
Δ = 3128001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{3128001}}{2*-1}=\frac{-1-\sqrt{3128001}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{3128001}}{2*-1}=\frac{-1+\sqrt{3128001}}{-2} $
| 3x+1x=8 | | x=180-121-42 | | 121+42+x=180 | | 2/x^2=3 | | z^2-8z+15=0. | | x-x^2=782000 | | 1.5x-3+1.5=3(x-1) | | 2(3x-)=2x+4x+5 | | 3x+7(8x)+4=60+x | | 56=11+5(y+2) | | x/5+11=-9;5-x/2=1/2 | | x-3x^2-2=0 | | X^2-1720t-13824=0 | | Y=3/4x+1/4 | | 12+x=5-13 | | 6w+4=2 | | 10x9+-9x10=0.75 | | 4x–3=16 | | 2.3674=(1+i)^10 | | 3a=18-7a | | 155+5z=11 | | 3(x-4)-7=-7 | | 7(x-3)-12=-96 | | 3(x+17)=60 | | 10w-18=32 | | 8(x-11)-16=-24 | | 5(x-8)-17=-22 | | 21*x=483 | | x^-10=-12 | | x^2-100=2x^2-44 | | 5.5=x/18000 | | 3x-1|4=8 |